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The instability of the ocean to Langmuir circulations 

By S. LEIBOVICH AND S. PAOLUCCIT 
Sibley School of Mechanical and Aerospace Engineering, Cornell University, 

Ithaca, New York 14853 

(Received 3 August 1979 and in revised form 13 March 1980) 

It has been proposed that Langmuir circulations arise as an inshbility of the equations 
describing the Eulerian-mean flow in bodies of water supporting surface waves and 
subject to an applied wind stress. In  infinitely deep density-stratified water, the 
solution of an appropriate initial-value problem is a unidirectional, time-dependent 
current. The stability of this current to two-dimensional (roll) disturbances is investi- 
gated by an energy analysis and by linear theory. It is found that the energy stability 
estimates and linear stability limits are very close, showing that subcritical instability, 
if it occurs, is limited to a very narrow region in parameter space. According to the 
present results, conditions typically occurring in the ocean are highly unstable to the 
Langmuir circulation instability. 

1. Introduction 
A theory of wind-driven convective motions in the upper layers of lakes and the 

ocean, discovered by Langmuir (1938) and named after him, has been offered by Craik 
& Leibovich (1976). This theory has been extended, refined, and its consequences 
explored by Leibovich (1977a), Leibovich & Radhakrishnan (1977), Craik (1977) and 
Leibovich (19773). 

The theory rests upon a set of equations, given in its most complete form in Leibovich 
(19773) andLeibovich (1980) and which we will generically call the CL model, for the 
Eulerian-mean flow in an ocean subject to surface wave activity and an applied wind 
stress. These equations permit solutions with rectilinear currents that are functions 
only of depth and (possibly) time. Craik (1977) showed that these solutions are un- 
stable in water of constant density, and Leibovich (19773) subsequently showed that 
they are unstable in water with a stable density stratification providing the wind stress 
exceeded a minimum value. The currents analysed in these papers, however, were 
not those that develop from the CL equations, and viscosity and heat transfer are 
ignored in both papers except by reference to an analogy of unknown utility. 

Leibovich & Paolucci (1980), referred to as LP henceforth, have examined this 
instability mechanism by direct numerical solution of the initial-value problem for 
the fully nonlinear CL equations. An infinitely deep ocean is assumed to be at rest 
and to have a constant (statically stable) temperature gradient for time t < 0. At 
t = 0, tt constant wind stress and surface wave activity are imposed, and the evolution 
of the Eulerian-mean motion is traced. For small time, the motion is identical with 
that of the stress Rayleigh problem and there is no change of temperature, but this 
xolution is unstable to small disturbances and strong convective activity takes place. 
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Since the motion is assumed independent of the co-ordinate in the wind direction, the 
instability takes the form of rolls and a mixed layer and thermocline develop. As time 
proceeds, the length scale and strength of the rolls increase, and there seems to be 
an energy cascade from small to large scales. 

In  this paper, we establish global stability bounds and linear instability limits for 
the unidirectional solution of the CL equations; thus we deal with the problem studied 
by LP, but under conditions near marginal instability. The present paper concerns 
only stability to two-dimensional disturbances. We have also examined the global 
stability question for three-dimensional disturbances, and shall report on that work 
(which poses a more difficult computational problem) elsewhere. The principal out- 
come, however, is the inference that the unidirectional current is most unstable to 
two-dimensional rolls with axes aligned with the wind. This is just what is observed 
in the ocean and implies that the stability results given in this paper are the relevant 
ones. 

Two complications seldom dealt with in stability theory are simultaneously present 
in this problem: (a) the motion whose stability we study takes place in an infinite 
domain, and ( b )  it is unsteady. The first complication poses problems for the energy 
stability theory that have already been faced by Dudis & Davis (1971a, b ) ,  and we 
follow t'heir lead. Optimal global stability bounds are found by a Galerkin approxima- 
tion to the solution of the associated variational problem. 

The second complication, the unsteadiness of the basic flow, implies that the linear 
stability problem is non-separable. We reduce the problem to a system of ordinary 
differential equations in time for the coefficients in a Galeikin approximation to the 
solution. In contrast to some unsteady base flows, precise stability limits can be given 
by what amounts to a quasi-steady (algebraic) analysis. A referee has brought to our 
attention the interesting work by Homsy (1973), Gumerman & Homsy (1976) and 
Wankat & Homsy (1977) in which rigorous lower bounds for the onset of instability 
have been obtained for unsteady flows in bounded domains using energy stability 
theory. In the present paper, upper bounds for the onset time (suitably interpreted) 
for unstable flows are established using linear theory. Our interest here is mainly to 
show that the onset time is short; and we in fact do find the upper bounds for onset 
time are small. 

Since the motion takes place in an infinite domain, a continuous as well as a discrete 
spectrum is expected for the linear stability problem. The Galerkin approximation 
yields only a discrete spectrum since i t  has finite dimension, but the development of 
the continuous spectrum is indicated by the increase in eigenvalue density as the 
order of the Galerkin approximation is increased. 

Two dimensionless parameters control this problem : the Langmuir number, La, 
which is an inverse Reynolds number based upon wind stress and surface wave para- 
meters; and a Richardson-number-like parameter Ri that provides a measure of the 
(stabilizing) density stratification in the basic flow. Ranges of these parameters that 
are physically significant for the ocean turn out to be highly unstable according to 
the present analyses. 

We find that the global stability bound and linear instability criterion almost 
coincide. For homogeneous water (Ri = 0), for example, stability is guaranteed 
for La > 0.68 and instability occurs for La c 0.66. Thus we can almost characterize 
the stability of this flow completely; the only unanswered question is a possible 
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subcritical instability in the gap 0.66 < La < 0.68. Similar results, but with a 
slightly larger gap, hold for cases with Ri # 0. 

We should add, a t  this point, further comment about our choice of thestressRayleigh 
problem as the (mean) current whose stability is examined. Certainly it is exceptional 
to initiate motion in the ocean by the imposition of a wind stress over quiescent water, 
as this basic flow contemplates. Furthermore, it is possible that the time evolution 
of the surfaoe wave field, which is ignored in this farmulation, that is engendered by 
the applied wind stress could introduce effects comparable in importance to  the time 
evolution of the current which is emphasized in this paper. More general situations 
can be treated using the formulations in this paper, We believe, however, that the 
problem addressed here, although highly idealized, is fundamental for a number of 
reasons. The destabilizing factors for Langmuir circulations, wind and waves, are 
introduced at  the surface, and the instability works its way down from the top. Thus, 
imagine a current that is more or less uniform and unidirectional from the surface to 
the base of the mixed layer (this is a model often taken for the current in the ocean 
mixed layer), to exist prior to the imposition of a wind stress, or to a shift in wind 
direction. In  fact, if the shear in this current is concentrated a t  the base of the mixed 
layer, then, by a Galilean transformation, we may move with the current, so that we 
see a quiescent upper layer overlying water moving a t  (essentially) constant speed. 
When the wind stress is imposed, one can expect the surface waters to respond initially 
as if the mixed layer were infinitely deep, with the surface stress transmitted to the 
water through a shear layer resembling the Rayleigh stress layer. I f  this layer is un- 
stable, and if the instability develops sufficiently rapidly (and from the theory it seems 
to do so) then for some time the bottom of the pre-existing mixed layer will not greatly 
affect the motion, including any associated instabilities, near the surface. 

The problem of time evolution of the surface wave field is one that we are unable 
to address a t  this stage; the growth of wind waves is a notoriously difficult subject, 
and it does not seem to us that its theory is sufficiently advanced to establish the kind 
of information needed to introduce wave growth into a theory of Langmuir circulation. 
Again, however, despite the role it may play in the ocean, the present formulation 
seems to us to be fundamental. As shown by Faller & Caponi (1978) and by Faller 
(1978), Langmuir circulations can be produced by mechanically generated waves, 
upon which a wind stress is suddenly imposed. Since the circulations form a t  very 
short fetches, it seems unlikely that the growth of waves by wind plays much of a 
role in these laboratory experiments. 

A final reason for our choice of basic flow state is our desire to complete the investi- 
gation begun by LP, who showed that Langmuir circulations, beginning from the basic 
state considered here under highly supercritical conditions, develop current and 
temperature fields resembling ‘real ’ mixed layers. The direct numerical simulation 
used in LP is, however, not a feasible method of determining the requirements for 
instability; stability analyses, such as those described here, are more useful. 

2. Governing equations 
The equations governing the Eulerian means for a fluid under the action of surface 

waves and satisfying the Boussinesq approximation are given by Leibovich (1977b, 
equation ( 12)). Let the mean free surface coincide with the (x, y) plann, let, t,he wind 
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stress be directed along the positive x axis (unit vector i ) ,  and let z be measured vertic- 
ally upwards (unit vector k)  from the mean free surface. It is assumed that the ocean 
is infinitely deep and initially at rest with a linearly increasing temperature T'(z). A t  
time t = 0, a mind stress p u i  (where u* is the water friction velocity and p a reference 
water density) and surface waves with characteristic frequency u, wavenumber K, 

and amplitude a are imposed. 
We will deal here only with motions and disturbances that are independent of x, 

and make all quantities dimensionless following Leibovich ( 1 9 7 7 ~ ) .  In  particular, we 
refer all lengths to K-1, time to ( v T / ~ ) * a - 1 ~ - 1 u ; ' ,  modified pressure n to ~ % : u v , ~ ,  
x-directed velocity component to u i  v ~ l  K - ~ ,  y and z velocity components to u* sub$, 
and temperature deviation from the constant gradient conduction solution to r 1 T r .  
Here V~ is an (assumed constant) eddy viscosity representing turbulent diffusivity of 
momentum. 

The presence of surface waves implies the existence of a second-order (in wave 
slope c = a K )  Stokes drift. This Stokes drift, velocity us, through the 'vortex force' 
us x o generated by us and the mean-flow vorticity o, is the only effect of the averaging 
to cause the equations to differ in form from those for instantaneous Eulerian quantities. 
We make the Stokes drift dimensionless by referring it to a 2 K u .  We allow the Stokes 
drift to depend only upon depth, and to be in the x direction. Later, for specific results, 
me will take the dimensionless Stokes drift to be 

us -- U&)i = 2e2*i. (1) 

This form is appropriate to infinitesimal monochromatic irrotational water waves, but 
the specific form chosen for us will make little difference in our results. 

With t,hese scaling choices and assumptions on u, made, the dimensionless governing 
equations may be written in the form 

Pa)  

( 2 b )  

v . v  = 0, ( 2 4  

av 
at 

ae -+v.VO = -k.v+LaPr-lV28, 
at 

--+v.Vv = U,Vu+RiOk-Vn+LaV2v, 

where v is the dimensionless Eulerian-mean velocity vector, and 8 is the dimensionless 
temperalme deviation from the conduction solution, La is the Langmuir number 
introduced by Leibovich (1 9 7 7 ~ )  

t La=- ( : )  KVT , 
au* 

and Pr b a (turbulent) Prandtl number 

P r  = vT /aT ,  

where aT is the (eddy) diffusivity of heat. The parameter Ri is 



Instability of the ocean to Langmuir circulations 145 

the denominator is a measure of the squared velocity gradient in the plane perpen- 
dicular to the wind; thus this number plays the role of an overall Richardson number 
(which is what we shall call it). 

We are interested in an initial-value problem in which a stress is applied to the plane 
z = 0 at time t = 0, and this leads to the following (dimensionless) initial and boundary 
conditions on the velocity vector: 

V(X)O) = 0,  ( 3 a )  

v ( x , t ) + O  as z +  -XI forall t <XI, ( 3 b )  

( 3 c )  
a 
- ( k x V ) = ( O , H ( t ) , O ) ,  k . v = O  at z = O ,  
az 

where H ( t )  is the Heaviside unit function (H = 0 for t < 0, H = 1 for t 3 0). 
A variety of thermal boundary conditions could be imposed, corresponding to wide 

range of physically relevant problems. In  this paper, we assume isothermal conditions 
at z = 0, and therefore take 

e(x,o) = 0, ( 3 d )  

e = o  at z = o ,  ( 3 4  

e + o  as Z + - C O .  (3.f  1 

A solution to problem (2)) ( 3 )  is a developing unidirectional current corresponding 
to the stress Rayleigh problem (see Leibovich 1 9 7 7 ~ )  equations (23 ) )  ( 2 4 ) ) :  

z 
?I=-- 2(tLa)4 * 

We wish to study the stability of the system (4). If we introduce perturbations to 
(4) by substituting 

(5) v = v + U ,  e = is+$ = 4) 7T = ? i f p ,  

into ( 2 ) )  noting that the barred quantities themselves satisfy (2)) the results are the 
following equations for perturbation quantities 

aU %+ u.  V u  = U,Vu - wDUi+ Bi$k - V p  + LaV2u,  (Gal 
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k . u = D ( u x k ) = $ = O  on z = O ,  ( 7 4  

u+O, $ - + O  as z+--oo,  ( 7 b )  

U(X,O) = uo(x), $(x, 0) = 0, ( 7 c )  

where uo(x) is solenoidal and satisfies ( 7 a ,  b ) .  We have denoted (x, y, x )  components 
of the perturbation velocit,y vector u = (u, w, w). 

3. Energy analysis 
Energy stability analyses typically proceed by forming the time rate of change of 

a positive definite functional of perturbation quantities in a given volume of fluid 
and then establishing conditions under which this must decrease in time for arbitrary 
disturbances. The volume is usually selected by requiring periodicity of perturbations 
in one or more directions. We shall require all perturbations to satisfy ( 7 )  and to be 
periodic with wavenumber k (or Fourier transformable) in the cross-wind direction y. 
The volume of integration V is taken to be a unit distance in the x direction, the 
interval 0 < y < 27r/k (or IyI < co if the disturbances are Fourier transformable), and 
the entire depth of the fluid -a < z < 0. 

The construction of the most straightforward energy functional begins by taking 
the scalar product of (6a )  and u, and integrating over V .  Since u is solenoidal, use of 
the divergence theorem and ( 7 )  eliminates the scalar p ,  and an equation for the per- 
turbation kinetic energy results. Similar manipulation with the equation for thermal 
energy yields an equation for the conservation of squared perturbation temperature. 
A linear combination of these two equations, linked by a positive coupling parameter, 
can be used to develop an optimized energy stability estimate, following Joseph 
(1976b).  In the present case, disturbances are assumed independent of x, and this 
introduces additional flexibility that permits the final results to be further optimized. 
Thus, me proceed slightly differently. Let 

u = ui+w, 

where w = vj +wk is the projection of u onto the y, z plane. Integrating the scalar 
product of w with (Ga) over V ,  and applying the divergence theorem and boundary 
conditions gives 

+uwDU,-RiwQ+LaVw:Vw dx = 0. 1 
The scaler product of ( 6 a )  with ui, when manipulated in the same way, yields 

while the product of ( 6 b )  with $ yields 
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Multiplying (10) by u2Ri, ( 9 )  by u,, and adding the resulting expressions to (8) gives 

dE - = I -LaD,  
at 

where the energy functional 

E = - ( w . w + a l u 2 + ~ 2 R i $ 2 ) d x  
k f V  

is positive for all perturbations for positive choices of the assignable coupling para- 
meters a1 and u2 (recall that we only consider positive, or stabilizing, values of Ri). 
In  (1  I), D is the (positive definite) dissipation functional 

D =Iv (Vw:Vw+a,lVu12+a2RiPr-1JVq5J2)dx, (12) 

and I is the energy production functional 

I = - Iv [uwDo+ Ri(cr,- 1)wq5]dx. 

In  I, we have introduced the symbol 0, 
0 = u,+a,u. 

The first energy stability analysis in an unbounded domain seems to have been that 
of Dudis & Davis (1971a), who note that apriori estimates customarily used to bound 
the production integral by the dissipation integral fails in unbounded flow. This 
precludes the analysis leading to the exponential decay of disturbances when global 
stability criteria are met. They nevertheless establish that the dissipation integral, 
D, vanishes as t + CQ. Since all perturbations in their problem vanish on a plane (say 
z = 0), they are able to conclude from D + 0 that the energy in a slab of fluid of any 
bounded thickness extending from z = 0 must vanish as t --f 00. This is weaker than 
asymptotic stability in the mean. 

From ( l i ) ,  

dt 

and, upon integration, 

Z(t)  -E(O) = -La D(7) [ 1 - La-lD-lI] d7. so’ 
Suppose 

I 
La,(t) = max- 

D 

exists for all t ,  where the maximum is taken over a suitable class of functions to be 
described later, and let 

where 
0 < Laa < La, (15) 

Ln, = max Ln,(t). 
1 
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Then the int,egrand in (14) is positive for all t ;  since E( t )  must also be positive, (14) 
shows t.hat 

Assuming E(0)  < co, D dt c co, and so D +- 0 as t + 00, as found by Dudis & Davis l o *  
(1971a) using essentially this argument. Furthermore, E(t) < E(0) for all t if (15) 
holds, which proves simple stability. 

In  the present problem, u does not vanish on x = 0, and we cannot invoke the a 
priori bounds which allow Dudis & Davis (1971 a) to infer from the result D +- 0 that 
the energy in finite subdomains must vanish as t --f 00. We can show that the Dudis & 
Davis stability holds, nevertheless, by using a different argument. Consider a finite 
volume B between the planes z = -dl and z = 0, and between y = y, and y = yl+d,, 
where d,, y1 and d, are arbitrary, but finite. Let 

0 < b < D,  b + 0 as t + 00 whenever (15) holds. Thus u + ti+u*, where ti is a, 
constant vector, and u* = O ( b i )  as b + 0. Thus 

where 

and 

But 

E = +lii)2dld2+E*, 

1 
E* = 5 .  u*  dx + 5j7 u * ~  dx 

E * =  O ( b 4 )  as b + O .  

B(t) < E(t )  < E(O), 

when (15) holds and, since d, and d, are arbitrary, this inequality is eventually violated 
unless ]ti/ = 0. 

We note that Galdi & Rionero (1977) rigorously show, for problems like ours, that 
(15) does imply asymptotic stability in the mean in unbounded domains for all per- 
turbations satisfying a certain equi-absolute continuity condition. Unfortunately, 
there is no way to decide a priori that perturbations governed by (6) and (7) and 
evolving from physically reasonable initial conditions will in fact satisfy their technical 
condition. 

We now turn to the maximum problem for La, and La,. This problem is guaranteed 
to have a solution (Galdi & Rionero 1977) provided an integrability condition on the 
rate of strain of the basic flow is met. It is easily verified that this is the case in the 
present problem; since we will actually find the solution to the maximum problem, 
there is no need to display the verification. 

Thus we seek 
T 
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where the maximum is sought in the class of functions 9' with u solenoidal, which 
yield finite values of the functional E ,  and which satisfy the boundary conditions ( 7 )  
and (if applicable) the periodicity conditions satisfied at each instant by the physical 
perturbations . 

The maximum of I / D  depends parametrically on time, as well as vl, v2, Ri, Pr. We 
shall let 

(17) 
1 

La, = 

and define 
1 

max min A La, = min max La, = 
u,,u*>o 1 

u,,u,>o 1 

where the extrema are taken over all possible non-negative values of t, bl and v2, 
with Ri and Pr held fixed. If a finite La, exists, then global monotonic stability is 
assured if 

and this criterion is optimal. 
The variational problem (16) for La,, or alternatively for h(t) (we suppress the other 

parameters upon which h depends when no confusion will result), is associated with 
the following Euler equations (here we use appendix B 2 of Joseph 1 9 7 6 ~ ) :  

La > La, (19) 

V ~ U  = - h wDO, 
201 

V2w = &I[(uDO+Ri(a,- l)$)k+Vp], (20b) 
h Pr 

v29 =20-,(v2-1)w,  

v.w = 0, w = (O,v,w), P o d  1 
where p is a function that can be regarded as maintaining the solenoidal character 
of w. 

The case v2 = 1 is particularly simple, since in that case the temperature-like 
variable 9 does not influence the stability criterion; there is, to our knowledge, no 
physical explanation for the decoupling nor does it generally lead to the best results. 

Since all functions are assumed independent of x and the coefficients of (20)  are 
independent of y, we may seek a solution in the form 

(21  1 (u, v, W , P ,  9, = (@.w, w, W ) ,  4(4, &)) eSkV. 

The variable p can be eliminated by taking the curl of (20b);  if this is done, and ( 2 1 )  
inserted into the result, ( 2 0 )  reduces to the set of ordinary differential equations 

h 
(D2-k2)24 = -,k2[&DU+Ri(a,- I ) $ ] ,  
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with boundary conditions 

For a given value of t  and k, let the smallest positive eigenvalue h of the system (22) 
be X(t; k). For fixed t ,  X( t ;  k) = X(t ;  - k) so it is sufficient to consider only positive 
values of k; we obtain a solution to the maximum problem by seeking the minimum 
of X over all t 2 0 and k 2 0. The optimal result is found by maximizing this minimum 
X over all possible values of crl and u2. 

It is convenient for numerical purposes to transform (22) by setting 6 = eg, thus 
placing the problem in a finite domain in 5. The eigenvalue problem becomes 

l h  

2 u1 
( 2 3 4  ( L - P ) Q  = --(DO)@, 

(L-k2)2@ = -*hk2[QDO+Ri(a2- 1)$], (23b) 

42 = 8 = $ = 0, and all derivatives bounded, on 6 = 0, (23e) 

and we now regard 0 to be given as a function of 6. 
To solve this problem, we employ the Galerkin technique and expand &,a, and 4 in 

linearly independent, complete sets of functions ui, wi and g5i satisfying the boundary 
conditions (23d, e), 

Here the bi are constants that will be chosen to satisfy the differential equations 
(23 a-c) . 

Upon substituting (24) into (23), we get 

The functions Rj, which depend explicitly on the coefficients bi and position c, are the 
residuals which result because (24) is not a solution of (23). In  the Galerkin method, 
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equations for the coefficients bi are obtained by requiring the residuals to be orthogonal 
to each of the approximating functions (Finlayson 1972), 

(Rlu,) = {R2wj)  = (R3q5*) = 0, j = 1 , 2 ,  ..., N ,  

where we use the notation 

This leads to a system of 3 N  linear, homogeneous algebraic equations for the bi, which 
can be written in the form 

The matrices 3Er and #are 
3Erb = A$,. ( 25 )  

3Er = (  1 i2 t), 
where the K,, K,, K3 and zero entries are all N x N matrix blocks, with 

and 

where again each entry is an N x N matrix, and 

A non-zero solution of (25 )  exists if and only if the determinant of coefficients 
vanishes, 

det(Sf-A%) = 0. (27 )  

Equation ( 2 7 )  is a 3Nth-order polynomial equation. Thus, an N-term Galerkin expan- 
sion produces the first 3N among the infinite number of eigenvelues of the system (23 ) .  

The condition (18) requires only the smallest positive value of A, which must be 
minimized over all positive values oft  and k, and then maximized over all cl, v2 > 0. 
For any Richardson number, 6, and g2, the numerical values for 8 fixed t and for 
different k for the first as well as higher approximations can be obtained once the 
basis functions ui, w i  and #i, and an appropriate form for the Stokes drift, are chosen. 
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N 
1 
5 
G 
7 
8 
9 

10 
11 
12 
13 

4 
5.87883 
2.77153 
2-67 102 
2.61187 
2.55758 
2.52125 
2.48707 
2.46223 
2.43845 
2.42022 

Cliange (%) 

- 
3.63 
2.22 
2.07 
1-42 
1.36 
1 *oo 
0.97 
0.75 

TARLE 1. Convergence of the minimum positive eigenvalue at k = v1 = u2 = 1 
for the global stability problem as t + co. 

To be consistent with our previous numerical work (LP) we take the turbulent Prandtl 
number to be Pr = 6.7, and (1) for the Stokes drift. We also adopt the basis functions 

Ui(5) = (5- QC2) (1 - 5)2i-2, ( 2 8 4  

Wi(5) = (55- 352) (1  - 5p-1, (28b) 

@dC) = 5i(l - 5 Y s  ( 2 8 4  

which satisfy the boundary conditions (23d, e). The choices (28) are probably not the 
most efficient for computational purposes, but they are easy to construct, and seem 
adequate for our purposes. The eigenvalue problem (25) was solved with a standard 
International Mathematical and Statistical Library (IMSL) eigenvalue subroutine for 
a real non-symmetric matrix system. For each fixed t ,  the minimum positive A for all 
k's can be found. Repetition of the numerical experiment for all values oft yields the 
minimum positive h for all k's and for all t ;  this furnishes an estimate of La,. This 
estimate can be improved by forming a table for the values of the minimum positive 
A as u1 and u2 are varied. The optimizing parameters for Ri = 0, are u1 = 0.25, and 
u2 = 1.0 and yield h = 1.46 at k = 0.32 and t = co. The optimizing parameters for 
Ri = 0.1 and Ri = 0.25 were also found and will be summarized in $4.  In all cases 
min h is obtained at t = co. 

t 

We considered the accuracy provided by the N = 13 Galerkin expansion to be 
adequate for our purposes. Convergence of the minimum positive h with increasing 
N is monotonic, and is demonstrated in table 1 for the case 6, = 1, r2 = 1 and k = 1 
(which is a case with a typical convergence rate). Further comment,s on accuracy may 
be found in the appendix. 

4. Instability to infinitesimal disturbances 
We now assume that the disturbance velocity u, (modified) pressure p ,  and tem- 

perature deviation from conduction $ are infinitesimally small, so that the nonlinear 
terms on the left-hand side of equations (6a) and (6b) may be neglected. As in the 
energy analysis, the perturbation is assumed to be independent of the wind direction 
and numerical results are given only for the cases wit'h Pr = 6-7 and Stokes drift given 
by (1)- 



Instability of the ocean to Langmuir circulations 153 

(a )  Reduction to ordinary digerential equations 

The linearized equation may be reduced to the following 

!? = La(D2-k2)Q-(DU)a,  (29a) at 

a8 
at 

8' 
at 

( 2 9 b )  ( 0 2  - k2) - = k2( DU,) Q + La( D2 - k2)2 8 - k2 Ri 4, 

(29c) - = - 6 +La Pr-'(D2 - k2) $, 

with boundary conditions (?a, b)  by suitable manipulation and the assumption that 

@,p, $1 = [ W Z ,  t ) ,  $(z,  t ) ,  '(2, t)l eiky* 

It is again convenient to make the transformation c = ez. If we continue to let 
L = c(a /ag)  ( [a /ac ) ,  the resulting initial-boundary value problem is 

( 3 0 4  

(30b) 

( 3 0 4  

with boundary conditions (23d ,  e )  as before. Since DU and DU, are known, we think 
of them as being expressed in terms of the new variable c. 

To reduce further the problem, we again use the Galerkin method and expend the 
solution in terms of a series of independent functions of 5 with unknown coefficients 
that depend on time: 

aa - = La(L-k2 )Q- (DU)Q,  
at 

a 6  
at 

at 

( L  - k2) - = k2(DU,) Q + L a ( L  - k2)28 - k2 Ri 6, 

-- '' - - 8 + La Pr-l(L - k2) 6, 

Proceeding as in the previous section leads to a system of 3N linear, homogeneous, 
first-order ordinary differential equations for the a,i : 

da 
dt 

9- = &a, 
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and the elements M,, of the matrix d a r e  also N x N matrices, with 
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(M&j = La(ui(L - k2) uj), 

(M12)ij = -(uiDuwj), 

(&3)ij = = (M31)ij7 

(M21)ij = k2(wi DU,u j), 

(M23)ij = - k2 w w i  9*), 
(MZ2)ij = La(wi(L- k2)'Wj), 

(M32)ij = - ($iwj>, 

(M33)ij = LaPr-l($i(L - k2) 4j). 

For any fixed finite approximation N we can write 

where the matrix A(t)  = 9 - l d i s  a function oft. 

( b )  stability of the system 
Linear stability or instability of the basic flow state now rests upon the stability or 
instability of the nonautonomous set (34) of ordinary differential equations. By 
stability we mean in the sense of Lyapunov, i.e., boundedness for all t .  In  particular, 
we shall investigate (Lyapunov) asymptotic stability, in which all solutions of (34) 
vanish as t + co. 

The solution is unstable if it  is not stable in the sense of Lyapunov, in particular if 
it is unbounded for some t =- 0. It is also of physical interest to identify a time a t  which 
instability 'begins'. Problems involving the stability of steady flows lead to a system 
like (34), but autonomous. The eigenvalues of the matrix A(t) are then time-inde- 
pendent; if the eigenvalues are distinct (and in our case multiple eigenvalues are 
exceptional and in the course of our computations did not occur) then the solutions 
to an autonomous system are exponential functions of t and asymptotic stability 
(instability) occurs if the largest eigenvalue of A has negative (positive) real part. 
If unstable, growth and instability ' begin ' a t  t = 0.  With a nonautonomous system, 
growth and decay of various components is not irreversible; some or all components 
may grow for a while and then decay, leading t o  asymptotic stability, or may initially 
decay but ultimately grow indefinitely, perhaps leading to instability. Thus, it  is not 
in general possible to identify unambiguously a time of onset of instability for a 
nonautonomous system. Nevertheless, we shall attempt a plausible estimate of the 
onset time for our system when it is unstable. 

We need to make one additional remark before describing the analysis. A system 
that is asymptotically stable may, as we have already mentioned, have an interim 
period of growth. In  determining linear stability, we may take initial disturbances 
to be as small as we like, and therefore all disturbances to an asymptotically stable 
system can be made as small as desired for all time. If temporary growth is rapid, 
however, or sustained for a long time, uncontrolled small initial disturbances may 
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amplify until the neglect of nonlinear terms is no longer an accurate assumption; this 
situation may therefore be physically indistinguishable from instability. It is, how- 
ever, possible to show that rapid growth of this sort is impossible in the present system 
for conditions under which asymptotic stability obtains (except possibly near the 
neutral curve), and we shall indicate this a t  the appropriate place in this section. 

The basic flow is a transient, with monotonic and bounded variation of the strain 
rate with time a t  any fixed position. This leads to  a much simpler stability problem 
than that posed by time-periodic basic flows. In  OUT case, time explicitly enters the 
stability problem in the N x N submatrix M12, with elements 

varies monotonically from 0 at t = 0 to unity as t + 00. The matrix A ( t )  can therefore 
be written as the sum 

A ( t )  = 9-1&( t )  = A + B(t),  (36) 
where 

A = limA(t) 
l + m  

is the constant matrix obtained by replacing [Ml2(t)li,  

and 
[Mlz(a)lij = - (u iw j ) ,  

0 

Again each entry is an N x N matrix block, and 

( 3 7 4  

(M12(t)-1M12(co)),ij = (BIJij = (u,( l  - D U )  w,) = ( uierf ( - 2$:1))8'). ( 3 7 b )  

Thus the problem is to characterize the behaviour of the solutions of 

da - = ( A  + B(t)) a, at (38 )  

with B( t )  +- 0 as t +- GO. As t + co, the problem reduces to one with constant co- 
efficients, and one expects asymptotic stability to be determined solely by the growth 
rates, that is eigenvalues, corresponding to the constant matrix A. That this expecta- 
tion is correct is confirmed by a number of theorems. For example, if all the eigen- 
values of A have negative real parts, and B + 0 as t + a, then asymptotic stability of 
the system ( 3 8 )  is assured by theorem 2, chapter 2 of Bellman (1969).  Thus asymptotic 
stability of the system (38)  is guaranteed if it is asymptotically stable with B = 0. 
Instability is also determined by (38 )  with 6 = 0. This is shown for cases in which A 
has only distinct eigenvalues by theorem 7, chapter 2 of Bellman, which shows that, 
corresponding to any eigenvalue A, of A, there is a solution vector a', wit'h 

6 I 'LII  I09 
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-Maximum growth 

0.1 0.5 1 5 10 so 100 500 1000 
La-' 

FIGURE 1. Stability diagram for Ri = 0, showing optimized global stability estimate and the 
marginal stability curve of linear theory. Precise values of the critical Langmuir numbers and 
wavenumbers are given in table 2. The curve for the most unstable mode is discussed in $5 .  

where C,, C,, to, d,, d,  are positive constants and I( is any suitable vector norm or 
compatible matrix norm. Thus, if any eigenvalue of A is positive, the system (38) is 
unstable. A more complicated but similar result is available if multiple eigenvalues 
occur; since this was never the case in our calculations, we omit the statement. It is 
probably worth noting that if B is given by (37) and a row or column norm for 11 Bll 
is used, 

ast+co. 

for the zero of the largest eigenvalue, 

of A. The zeros of A, are located by varying La while holding Ri amd k fixed; doing 
this for a sequence of values of k produces a neutral stability curve at  fixed Ri. The 
results of this process are displayed in the k, La-l planes of figures 1-3 for Ri = 0,O. 1 
and 0.25, respectively. Optimum regions of global stability, as established in t,he 
previous section, are indicated on these figures, as well as the locus of asymptotic 
(as t --f co) maximum growth rate of the linear theory in the unstable regime. The 
critical instability and energy limits are also given in table 2. 

The remarkable feature of these results is the near coincidence of the global stability 
and linear instability limits. This implies that the results only narrowly miss capturing 
all relevant information concerning the stability of the basic flow. Only in the small 
gap of La-' between the two critical values of La-' is there a possibility of a subcritical 
instability. 

We construct a neutral curve for asymptotic stability of the basic flow by searching 

(41) A, = A,(k, La, Ri), 
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0.1 0.5 1 5 10 50 100 500 1000 
La -1 

FIQTJRE 2. Stability diagram for Ri = 0.1. 

0.5 I 5 10 50 100 500 1000 
La 

FIGURE 3. Stability diagram for R6 = 0.25. 

0.1 

The results displayed in figures 1-3 correspond to N = 13 in the Galerkin expansion. 
Details concerning the convergence and nature of the spectrum as N is increased may 
be found in the appendix. Here we only note that the eigenvalues are simple, and the 
maximum eigenvalue ,I1 is real so, at the onset, stationary instability is indicated. 
Furthermore, A, converges monotonically from below to its (presiimed) limiting value 

6-2 
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Ri La;' k LaGI kG1 W l ,  us) 
0.00 1.52 0.32 1-46 0.32 (0.25, 1.00) 
0.10 1-58 0.31 1.47 0.32 (0-25, 0.99) 
0.25 1-66 0.30 1-50 0.32 (0.25, 0.96) 

TABLE 2. Critical inverse Langmuir number La;' and critical wavenumber k, of linear theory 
at various Richardson numbers. Also shown are the optimal global stability limit LUG', the 
wavenumber kc at which Lac occurs, and optimal coupling parameters (u~, us). Subcritical 
instability in the gap La,' < La-' < La;' is not ruled out. 

as N increases. Some of the eigenvalues in the spectrum are complex, and as higher 
and higher approximations are taken the spectrum in the left half-plane becomes more 
dense, suggesting the formation of a continuous spectrum. The computations indicate 
that the spectrum in the right half-plane is discrete and real. 

Points on the neutral curve are points of stability; solutions corresponding to these 
parameters are bounded, although not necessarily asymptotically stable. To see this, 
note that the matrix elements in (37 b )  for large t are 

if the basis (28) is used. The error in (42) is O ( t 4 ) .  We write (42) as 

(B12)ij N (nLat)-4 zij; (43) 

furthermore, it  can be shown that lij can be expressed in the form 

1,j = 5G(2,2(i +j) - 3) - +1G(37 2(i +j) - 3) + $G(4,2(i+j) - 3), (44) 

where 
m ! n !  n f l  1 

G(m,n) = x- (m+n+l ) ! ,= , ( rn+k) '  

From (43), we infer that B + 0 as t + 00, and that 

so that 

(45) 

We will discuss the behaviour of the eigenvalues of the matrix A(t) of (36) in the next 
subsection. Here we need to anticipate the most important characteristic; if we let 
pl(t) be the largest eigenvalue of A(t), then pl(t)  is real and is found to increase mono- 
tonically with t .  Therefore, if one is a t  the neutral curve pl(t) + 0 through negative 
values as t --f 00. This, together with the integrability of IldB/dtll and the vanishing 
of B as t --f 00 permits us to infer (Bellman 1969, p. 37) that all solutions of (38) are 
bounded on the neutral curve as t + 00. 

(c) Estimate of the onset time for instability 

We have already indicated that the onset time for instability, i.e. the time at which 
irreversible growth first begins, is not well defined. This can be true even if, by direct 
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integration, the detailed solution of (38) would be available. Nevertheless, for systems 
known to be asymptotically unstable, it is natural to seek an onset time. There are 
several approaches to this question, short of integration of (38), and we describe two 
of them here. 

If the growth of perturbation energy is selected as a measure of onset time, the 
following bounds are relevant (Cesari 197 1, p. 48) 

where A, is the smallest, and A, the largest, eigenvalue of the symmetric matrix 

AAt) = +(W +AT(t)). 

Thus the perturbation energy'certainly must decrease as long as A,(t) < 0. The onset 
time for growth of perturbation energy therefore must exceed the time t ,  at which 
A,(t) first passes through zero from negative values, as it certainly must eventually do 
for a system that is unstable. Of course, the perturbation energy may not begin to 
grow a t  t = t,, and so this does not provide a definite time for onset of growth. 

A second indicator that growth has begun is the first crossing from negative to 
positive values of the real part of the maximum eigenvalue of A(t) itself. This eigen- 
value we call p l ( t ) ,  and p, + A, (given by (41)) as t -f a. The asymptotic stability of 
the system can be discussed in terms of the behaviour of pl ( t )  by transforming (34) 
to A-diagonal form (Cesari 1971, p. 40). Let a = P(t)y,  and choose the matrix P ( t )  
so that P-lA(t) P is the diagonal matrix diag (pl, p2, . . . , p N )  ; then (34) implies that 

Under conditions already stated on the matrix A(t), the system is asymptotically 
stable or unstable if p1 -= 0 or p1 > 0 as t --f 00. Thus the crossing of p1 from negative 
to positive values is an indicator of onset of instability, provided p, is monotonic in 
time, as it is in the present case. 

To give an idea of the times at which onset occurs according to these two criteria, 
we have calculated A,(t) and p l ( t )  using the N = 1 approximation for three values of 
La (the critical value for the N = 1 approximation, La = 0.169, La = 0.1, and 
La = 0.01) for Ri = 0. In  each case A,(t) andp,(t) are maximized over the wavenumber 
k; results are given in figures 4-6. Of course the values of As and p1 provided by the 
first approximation are not accurate. We know, however, that, as N is increased, p, 
increases (monotonically with N) as convergence is approached. Therefore the onset 
time t ,  provided by the N = 1 approximation is an upper bound to the onset time 
identified by this met,hod. Furthermore, we always expect As > p, for A, near zero 
or positive, and so t ,  is expected to be an upper bound for the onset time estimated 
from either of the two criteria postulated here. The precise values of onset time are 
not of interest, but it is of interest to see, as figures 4-6 show, that t'he onset times are 
not large. 
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FIGURE 4. Eigenvalues A,(t) - - - - and p l ( t )  - are used to estimate the onset time for in- 
stability in Q ~ ( c ) ,  w calculated from the N = 1 Galerkin approximation, and for La = 0.169, 
which is the critical Langmuir number for the N = 1 approximation. 
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FIGURE 5. Eigenvalues A&) ---- and p l ( t )  - for La = 0.1 and Ri = 0, calculated for 
N = 1. The time t* is designated in the text. m an upper bound for the onset time for instability. 
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0.1 

0 

FIGURE 6. Eigenvalues A,(t) - - - - and pl ( t )  - for La = 0.01 and Ri = 0, calculated for 
N = 1.  The time t* is designated in the text as an upper bound for the onset time for instability 
for this (La, Ri) pair. 

I I I I I I I I ,  
0.1 0.5 1 s 10 so 100 so0 1000 

1, 
FIGURE 7. The upper bound, t * ,  for the onset time for instability aa a function of 

La, for Ri = 0. 

The upper bound for onset time based on p1 for Ri = 0 is displayed in a different 
way in figure 7 ,  which shows t ,  as a function of La. 

( d )  Bounds on stable solutions 
As mentioned in subsection (b), i t  is of interest to know that an asymptotically stable 
solution does not grow exceptionally large for finite values of time before eventually 
decaying. To establish the maximum size of the perturbations, we employ a slight 
variant of a standard analysis. 
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Let Q be the (constant) matrix with the eigenvectors of A as columns. Then (38) 
may be written as 

where 

Let 

then 

A, 0 ... 
!?- at - (0 :.- * .  "i..c(t)x, 

0 0 ... A, 

C(t) = Q-lB(t) Q, a = Qx. 

xi = xiexp[-A,t]; 

r, = A, - A, 3 0, 

and (48) is equivalent to the integral equation 

zi(t) = x&O) exp [ - r,t] + Cir(7) z,(T) exp [ - ri(t - T ) ]  d ~ ,  l o t  
where Cir are the elements of C(t). Since r, 2 0, 

Ilz(t)ll G IlX(0)ll +l1 IIC(7)II I I W I  a7. 

lIx(t)ll IlX(0)ll e-xp (/)C(T)Il d.). 

0 

By Gronwall's inequality and the definition of z 

We have 

and, since 
llcll II Q-YI II Qll II W)lI 

for all 7 > 0, the asymptotic formula (43) is actually an upper bound for the matrix 
elements of B. If we let L be the N x N matrix with elements I,, given by (44), and 
let the positive constant c be 

then 
(53) 

(54) 

If  the flow is asymptotically stable, then Reh, = -p2 is negative. Perturbations 
may grow initially, but their norm is less than 

IlX(0)ll exp [(c/2/3)21 

a t  any time, and certain decay occurs for t > p-2(c/2p)2. As the neutral curve is 
approached, p --f 0, and this estimate is not useful. We already know the solution is 
bounded but not asymptotically stable there, but we are unable by the present 
method to bound the solution for all values of t  as /3 --+ 0. 
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5. Discussion 
Foster (1965, 1968) studied the linear instability of fluid subject to time-dependent 

cooling at the upper surface for horizontal layers of both finite and infinite depths. 
Leibovich ( 1 9 7 7 ~ )  pointed out that the Langmuir circulation problem, even in water 
of constant density, is partially analogous to that of thermal convection; thus Foster’s 
problems and ours have interesting parallels that Craik (1977) has exploited. 

Foster’s work deals with supercritical conditions only, and concentrates on the 
identification of an ‘onset ’ time for instability and the wavenumber of the most un- 
stable disturbance mode of the system as i t  evolves in time in response to the imposed 
transient thermal boundary conditions. The method used involved a reduction (by a 
Galerkin approximation) to a set of ordinary differential equations in time, similar 
to that in our $4, followed by a numerical integration of these equations. The onset 
time is identified as that a t  which the disturbance has amplified by an arbitrary factor 
(i,e., lorn, n = 1,2,  etc.). Figures for the growth of a norm of the disturbance are given 
for cases (B) in which the temperature of the upper surface decreases monotonically 
with time. One other case (case (A), a step-function temperature decrease), was also 
treated, but presented in less detail. In  case B disturbances increase supeiexponen- 
tially, and it therefore is the more dramatic; we note that the method of our f 4 cannot 
be applied to case B, since the limit of the associated matrix A(t) as t -+ co does not 
exist (hence the superexponential growth). The identification of the fastest growing, 
or most unstable, Fourier mode is of rather limited value, since the response curves 
(critical time for onset vs. horizontal wavenumber) are very flat. Nevertheless, Foster 
finds that the critical wavenumber changes little after disturbances are amplified by 
a factor of 10. 

We have also attempted to identify a critical, or most unstable, mode for supercritical 
conditions, using the maximum eigenvalue pl(t; k ,  La, Ri) of $4. At any fixed Ri, La, 
and time level t exceeding the onset time t ,  of $4, p1 has a positive maximum when 
considered as a function of k. The locus of points in the k, La-1 plane at fixed t > t, 
and Ri describe the critical wavenumbers at fixed time. These curves rapidly approach 
that for t + 00, and are qualitatively like that curve; we therefore have displayed only 
the result for t = 00, which may be found in figures 1-3. Because of this rapid approach 
to the t = m curve, and because the most unstable wavenumbers for intermediate time 
do not deviate markedly from those for t = 00, the results illustrated can reasonably 
be described as the preferred modes of linear theory. 

In  the non-diffusive (La-’ --f co) stability analyses of steady currents Craik (1977) 
and Leibovich (1977b) found that all wavenumbers are unstable, and that the most 
unstable wavenumber is k = M). The present results are consistent with these con- 
clusions. It does not, however, appear as though the analogies with diffusive thermal 
instability tentatively offered in either paper, including Craik’s analogy with Foster’s 
(1965, 1968) time-dependent thermal-stability problem, agree very well with the 
present results. (For example, the most unstable wavenumbers differ considerably.) 
Since the mathematical problems differ from the present one, agreement is hardly to be 
expected, and we have not explored the matter further. 

According to figure 1, the preferred mode of linear theory has dimensional wave- 
length A = (2n/0-32) k - l =  3-1Aw, where A, is the wavelength (2nlk) of the dominant 
surface waves, when La has t’he critical value 0.60 for linear instability. At the 
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Langmuir number, La = used in finite-difference calculations by LP, 
A 2: 0.25h,,.. Under such highly supercritical conditions, however, a correspondence 
between spacing of Langmuir circulation convergence zones and the wavelength of 
the preferred linear mode is not expected. In  fact, the numerical simulations of LP 
suggest a cascade from smaller to larger cells, in agreement with the experimental 
findings of Faller & Caponi (1978),  and this implies that one must know the lifetime 
of a circulation system, as well as wind conditions and sea state, to arrive at a 
(predicted) spacing of Langmuir convergence zones. 

6. Conclusion 
The most important results of this paper are (a) the near coincidence of the asymp- 

totic stability and global stability limits indicated in figures 1-3, and ( b )  the fact that 
these limits occur for La = O ( 1 )  for Richardson numbers of interest in the ocean 
(which are of order l O - l ,  according to the estimates of LP). Leibovich ( 1 9 7 7 4  argues 
that Langmuir numbers of interest in the ocean are small, typically of the order of 
10-2-10-s. Consequently, the ocean is typically expected to be highly supercritical 
according to the present analysis. 

It must be recognized, of course, that the present analysis deals with a highly 
idealized problem. It is assumed, for example, that motion begins from a quiescent 
state, so that the initial development is described by the solution (4) to the stress 
Rayleigh problem; in the ocean, current systems routinely occur that are not driven 
by the local wind field. In  addition, the present analysis ignores the Coriolis accelera- 
tion which strongly affects the wind-driven current if the wind stress is maintained for 
sustained periods of time. (We are presently working on stability analyses and finite- 
difference simulations that include Coriolis effects.) Furthermore, the applied wind 
stress fluctuates in magnitude as well as direction, and is never constant as assumed 
here. A mean current system will develop that is associated, first of all, with the 
average applied wind stress. This current will presumably be subject to Langmuir 
circulation instabilities which form and decay as the local wind fluctuates in speed 
and direction. The mean current is then created not only by the average wind stress, 
but also by the Reynolds sbresses associated with the Langmuir instabilities (and, of 
course, to other phenomena, such as ordinary turbulence, that transfer momentum), 
which in turn depend upon the current and wind histories. 

This work was supported by the Physical Oceanography Program of the National 
Science Foundation under Grant OCE 77-04482. 
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and constructive criticisms. 

Appendix 
Convergence of the spectrum associated with the linear asymptotic stability prob- 

lem as the number N of retained terms in the Galerkin expansion is increased is dealt 
with here. The eigenvalue with largest real part, A,, is of primary interest. Table 3 
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A1 

- 0.27007 
- 0.12267 
- 0.1 1449 
- 0.1 1176 
- 0.10854 - 0.10743 
- 0.10589 
-0.10536 
- 0.10453 
- 0.10424 

6.67 
2-38 
2.88 
1.02 
1.43 
0.60 
0.79 
0.28 

TABLE 3. Convergence of the maximum growth rate at k = 1.0, La = 0.4021, 
and Ri = 0 for the linear stability problem 88 t + 00. 

shows the behaviour of A, for Ri = 0, k = 1.0 and La = 0.4021. The convergence is 
monotonic in all cases, as found also (table 1) for the relevant eigenvalue in the global 
stability analysis. The rate of convergence shown in table 3 is typical of that for other 
points in the (k, La, Ri) parameter space. 

An N-term Galerkin approximation produces 3N eigenvalues. The real parts of 
the spectra for the example of table 3 (which is for a flow stable a t  the prescribed wave- 
number) as N is increased is shown in figure 8. Real parts of complex conjugate pairs 
are indicated by crosse8; dots correspond to real eigenvalues. The spectrum grows 
more dense as N increaws, suggesting the filling in of a continuous spectrum. There 
is on indication, but no convincing evidence, that spectra lying wholly in the left- 
hand h plane (such as that in figure 8) are in general complex (except, because of 
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t-' 
FIGURE 9. Close-up view of the first eleven eigenvalues for the case in figure 8, 

plotted in the complex plane. 

symmetry about the real axis, for the eigenvalue with greatest real part). This com- 
plex, presumably continuous, spectrum takes form as N is increased in the following 
way. A pair of negative real eigenvalues move in from the left and presumably coalesce 
forming a double root that was never actually observed - and move off the real axis 
to form a complex conjugate pair. The farther from the imaginary axis the coalescence, 
occurs, the larger the ultimate value of the imaginary part. A close-up of the first 
eleven (of 39) eigenvalues for the N = 13 approximation of figure 8 is shown in figure 9. 

The eigenvalue with largest real part is always real whether positive or negative; 
it appears in fact as though all eigenvalues that cross the imaginary axis do so through 
the real line. Unstable configurations therefore appear associated with a real, discrete 
spectrum in the right half-plane as well as a continuous spectrum in the left half-plane. 
It is not clear, however, whether the eigenvalues that cross the imaginary axis peel 
off the continuous spectrum in the left-hand plane very close to the origin, or a t  the 
origin itself. 

All numerical calculations were performed in double precision on an IBM 370/ 168 
using the Fortran H compiler with optimization parameter set a t  2. We believe the 
eigenvalues calculated as part of the construction of stability diagrams are subject to 
less than a 1% error. 
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